Question:
The equation of the normal to the curve $y=(1+x)^{2 y}+\cos ^{2}\left(\sin ^{-1} x\right)$ at $x=0$ is :
Correct Option: , 3
Solution:
$\because y=(1+x)^{2 y}+\cos ^{2}\left(\sin ^{-1} x\right)$
$y=e^{2 y \ln (1+x)}+\cos ^{2}\left(\cos ^{-1} \sqrt{1-x^{2}}\right)$
$=e^{2 y \ln (1+x)}+\left(1-x^{2}\right)$
$\frac{d y}{d x}=(1+x)^{2 y}\left[2 \ln (1+x) \frac{d y}{d x}+\frac{2 y}{1+x}\right]-2 x$
When $x=0$, then $y=2$
$\therefore \frac{d y}{d x}=4$
Slope of normal at $x=0$ is $-\frac{1}{4}$
$\therefore$ Equation of normal: $y-2=-\frac{1}{4}(x-0)$
$\Rightarrow x+4 y=8$