The fission properties of ${ }_{94}^{239} \mathrm{Pu}$ are very similar to those of ${ }_{92}^{235} \mathrm{U}$.
The average energy released per fission is $180 \mathrm{MeV}$. How much energy, in MeV, is released if all the atoms in $1 \mathrm{~kg}$ of pure ${ }_{94}^{239} \mathrm{Pu}$ undergo fission?
Average energy released per fission of ${ }_{94}^{239} \mathrm{Pu}, E_{a v}=180 \mathrm{MeV}$
Amount of pure $_{94} \mathrm{Pu}^{239}, m=1 \mathrm{~kg}=1000 \mathrm{~g}$
$N_{A}=$ Avogadro number $=6.023 \times 10^{23}$
Mass number of ${ }_{94}^{299} \mathrm{Pu}=239 \mathrm{~g}$
1 mole of ${ }_{94} \mathrm{Pu}^{239}$ contains $\mathrm{N}_{\mathrm{A}}$ atoms.
$\therefore m \mathrm{~g}$ of ${ }_{94} \mathrm{Pu}^{239}$ contains $\left(\frac{\mathrm{N}_{\mathrm{A}}}{\text { Mass number }} \times m\right)$ atoms
$=\frac{6.023 \times 10^{23}}{239} \times 1000=2.52 \times 10^{24}$ atoms
$\therefore$ Total energy released during the fission of $1 \mathrm{~kg}$ of ${ }_{94}^{239} \mathrm{Pu}$ is calculated as:
$E=E_{\alpha v} \times 2.52 \times 10^{24}$
$=180 \times 2.52 \times 10^{24}=4.536 \times 10^{26} \mathrm{MeV}$
Hence, $4.536 \times 10^{26} \mathrm{MeV}$ is released if all the atoms in $1 \mathrm{~kg}$ of pure ${ }_{94} \mathrm{Pu}^{239}$ undergo fission
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.