The potential energy (U) of a diatomic molecule is a function dependent on r (interatomic distance)

Question:

The potential energy (U) of a diatomic molecule is a function dependent on $r$ (interatomic distance)

as $\mathbf{U}=\frac{\alpha}{r^{10}}-\frac{\beta}{r^{5}}-3$ Where, $\mathbf{a}$ and $\mathbf{b}$ are positive constants. The equilibrium distance between two

atoms will $\left(\frac{2 \alpha}{\beta}\right)^{\frac{a}{b}} \cdot$ Where $\mathbf{a}=$

Solution:

(1)

$F=-\frac{d U}{d r}$

$F=-\left[-\frac{10 \alpha}{r^{11}}+\frac{5 \beta}{r^{6}}\right]$

for equilibrium, $\mathrm{F}=0$

$\frac{10 \alpha}{r^{11}}=\frac{5 \beta}{r^{8}}$

$\frac{2 \alpha}{\beta}=r^{5}$

$r=\left(\frac{2 \alpha}{\beta}\right)^{1 / 5}$

$a=1$

Leave a comment