The real value of $\alpha$ for which the expression $\frac{1-i \sin \alpha}{1+2 i \sin \alpha}$ is purely real, is
(a) $(n+1) \frac{\pi}{2}$
(b) $(2 n+1) \frac{\pi}{2}$
(c) nπ
(d) none of these where n ∈ N.
Given $\frac{1-i \sin \alpha}{1+2 i \sin \alpha}$ is purely real
i. e $\frac{1-i \sin \alpha}{1+2 i \sin \alpha} \times\left(\frac{1-2 i \sin \alpha}{1-2 i \sin \alpha}\right)$
$=\frac{1-i \sin \alpha-2 i \sin \alpha+2 i^{2} \sin ^{2} \alpha}{1-4 i^{2} \sin ^{2} \alpha}$
$=\frac{1-3 i \sin \alpha-2 \sin ^{2} \alpha}{1+4 \sin ^{2} \alpha}$
$=\frac{1-2 \sin ^{2} \alpha}{1+4 \sin ^{2} \alpha}+i\left(\frac{-3 \sin \alpha}{1+4 \sin ^{2} \alpha}\right)$
Which is given to purely real
$\Rightarrow \frac{-3 \sin \alpha}{1+4 \sin ^{2} \alpha}=0$
$\Rightarrow-3 \sin \alpha=0$
i. e $\sin \alpha=0$
i. e $\alpha=n \pi$
Hence, the correct answer is option $\mathrm{C}$.