Question:
The value of $\cot \left(\sum_{n=1}^{19} \cot ^{-1}\left(1+\sum_{p=1}^{n} 2 p\right)\right)$ is :
Correct Option: , 3
Solution:
$\cot \left(\sum_{n=1}^{19} \cot ^{-1}(1+n(n+1))\right.$
$\cot \left(\sum_{n=1}^{19} \cot ^{-1}\left(n^{2}+n+1\right)\right)=\cot \left(\sum_{n=1}^{19} \tan ^{-1} \frac{1}{1+n(n+1)}\right)$
$\sum_{n=1}^{19}\left(\tan ^{-1}(n+1)-\tan ^{-1} n\right)$
$\cot \left(\tan ^{-1} 20-\tan ^{-1} 1\right)=\frac{\cot A \cot \beta+1}{\cot \beta-\cot A}$
(Where $\tan \mathrm{A}=20, \tan \mathrm{B}=1$ )
$\frac{1\left(\frac{1}{20}\right)+1}{1-\frac{1}{20}}=\frac{21}{19}$
$\therefore$ Option (3)
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.