The value of $\left({ }^{7} C_{0}+{ }^{7} C_{1}\right)+\left({ }^{7} C_{1}+{ }^{7} C_{2}\right)+\ldots+\left({ }^{7} C_{6}+{ }^{7} C_{7}\right)$ is
(a) 27 − 1
(b) 28 − 2
(c) 28 − 1
(d) 28
(b) $2^{8}-2$
$\left({ }^{7} C_{0}+{ }^{7} C_{1}\right)+\left({ }^{7} C_{1}+{ }^{7} C_{2}\right)+\left({ }^{7} C_{2}+{ }^{7} C_{3}\right)+\left({ }^{7} C_{3}+{ }^{7} C_{4}\right)+\left({ }^{7} C_{4}+{ }^{7} C_{5}\right)+\left({ }^{7} C_{5}+{ }^{7} C_{6}\right)+\left({ }^{7} C_{6}+{ }^{7} C_{7}\right)$
$=1+2 \times{ }^{7} C_{1}+2 \times{ }^{7} C_{2}+2 \times{ }^{7} C_{3}+2 \times{ }^{7} C_{4}+2 \times{ }^{7} C_{5}+2 \times{ }^{7} C_{6}+1$
$=1+2 \times{ }^{7} C_{1}+2 \times{ }^{7} C_{2}+2 \times{ }^{7} C_{3}+2 \times{ }^{7} C_{3}+2 \times{ }^{7} C_{2}+2 \times{ }^{7} C_{6}+1$
$=2+2^{2}\left({ }^{7} C_{1}+{ }^{7} C_{2}+{ }^{7} C_{3}\right)$
$=2+2^{2}\left(7+\frac{7}{2} \times 6+\frac{7}{3} \times \frac{6}{2} \times 5\right)$
$=2+252$
$=254$
$=2^{8}-2$