The value of

Question:

The value of $\left(\frac{-1+i \sqrt{3}}{1-i}\right)^{30}$ is

  1. (1) $-2^{15}$

  2. (2) $2^{15} i$

  3. (3) $-2^{15} i$

  4. (4) $6^{5}$


Correct Option: , 3

Solution:

$\because-1+\sqrt{3} i=2 \cdot e^{\frac{2 \pi}{3} i}$ and $1-i=\sqrt{2} \cdot e^{-\frac{i \pi}{4}}$

$\therefore\left(\frac{-1+\sqrt{3} i}{1-i}\right)^{30}=\left(\sqrt{2} e^{\left(\frac{2 \pi}{3}+\frac{\pi}{4}\right)}\right)^{30}$

$=2^{15} \cdot e^{-\frac{\pi}{2} i}=-2^{15} \cdot i$

Leave a comment