The zeros of the polynomial

Question:

The zeros of the polynomial $x^{2}-\sqrt{2} x-12$ are

(a) $\sqrt{2},-\sqrt{2}$

(b) $3 \sqrt{2},-2 \sqrt{2}$

(c) $-3 \sqrt{2}, 2 \sqrt{2}$

(d) $3 \sqrt{2}, 2 \sqrt{2}$

 

Solution:

(b) $3 \sqrt{2},-2 \sqrt{2}$

Let $f(x)=x^{2}-\sqrt{2} x-12=0$

$=>x^{2}-3 \sqrt{2} x+2 \sqrt{2} x-12=0$

$=>x(x-3 \sqrt{2})+2 \sqrt{2}(x-3 \sqrt{2})=0$

$=>(x-3 \sqrt{2})(x+2 \sqrt{2})=0$

$=>x=3 \sqrt{2}$ or $x=-2 \sqrt{2}$

 

Leave a comment