Using binomial theorem, expand each of the following:
$\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$
To find: Expansion of $\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$
Formula used: (i) ${ }^{n} C_{r}=\frac{n !}{(n-r) !(r) !}$
(ii) $(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+\ldots \ldots+{ }^{n} C_{n-1} a b^{n-1}+{ }^{n} C_{n} b^{n}$
We have, $\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$
Let, $\left(3 x^{2}-2 a x\right)=p \ldots$ (i)
The equation becomes $\left(p+3 a^{2}\right)^{3}$
$\Rightarrow\left[{ }^{3} C_{0}(p)^{3-0}\right]+\left[{ }^{3} C_{1}(p)^{3-1}\left(3 a^{2}\right)^{1}\right]+\left[{ }^{3} C_{2}(p)^{3-2}\left(3 a^{2}\right)^{2}\right]+\left[{ }^{3} C_{3}\left(3 a^{2}\right)^{3}\right]$
$\Rightarrow\left[{ }^{3} C_{0}(p)^{3}\right]+\left[{ }^{3} C_{1}(p)^{2}\left(3 a^{2}\right)\right]+\left[{ }^{3} C_{2}(p)\left(9 a^{4}\right)\right]+\left[{ }^{3} C_{3}\left(27 a^{6}\right)\right]$
Substituting the value of p from eqn. (i)
$\Rightarrow\left[\frac{3 !}{0 !(3-0) !}\left(3 x^{2}-2 a x\right)^{3}\right]+\left[\frac{3 !}{1 !(3-1) !}\left(3 x^{2}-2 a x\right)^{2}\left(3 a^{2}\right)\right]$
$+\left[\frac{3 !}{2 !(3-2) !}\left(3 x^{2}-2 a x\right)\left(9 a^{4}\right)\right]+\left[\frac{3 !}{3 !(3-3) !}\left(27 a^{6}\right)\right]$
$\Rightarrow\left[1\left(3 x^{2}-2 a x\right)^{3}\right]+\left[3\left(3 x^{2}-2 a x\right)^{2}\left(3 a^{2}\right)\right]+\left[3\left(3 x^{2}-2 a x\right)\left(9 a^{4}\right)\right]+$
$\left[1\left(27 a^{6}\right)^{3}\right]$
(ii)
We need the value of $p^{3}$ and $p^{2}$, where $p=3 x^{2}-2 a x$
For, $(a+b)^{3}$, we have formula $a^{3}+b^{3}+3 a^{2} b+3 a b^{2}$
For, $\left(3 x^{2}-2 a x\right)^{3}$, substituting $a=3 x^{2}$ and $b=-2 a x$ in the above formula
$\Rightarrow\left[\left(3 x^{2}\right)^{3}\right]+\left[(-2 a x)^{3}\right]+\left[3\left(3 x^{2}\right)^{2}(-2 a x)\right]+\left[3\left(3 x^{2}\right)(-2 a x)^{2}\right]$
$\Rightarrow 27 x^{6}-8 a^{3} x^{3}-54 a x^{5}+36 a^{2} x^{4} \ldots$ (iii)
For, $(a+b)^{2}$, we have formula $a^{2}+2 a b+b^{2}$
For, $\left(3 x^{2}-2 a x\right)^{3}$, substituting $a=3 x^{2}$ and $b=-2 a x$ in the above formula
$\Rightarrow\left[\left(3 x^{2}\right)^{2}\right]+\left[2\left(3 x^{2}\right)(-2 a x)\right]+\left[(-2 a x)^{2}\right]$
$\Rightarrow 9 x^{4}-12 x^{3} a+4 a^{2} x^{2} \ldots$ (iv)
Putting the value obtained from eqn. (iii) and (iv) in eqn. (ii)
$\Rightarrow\left[1\left(27 x^{6}-8 a^{3} x^{3}-54 a x^{5}+36 a^{2} x^{4}\right)\right]+$
$\left[3\left(9 x^{4}-12 x^{3} a+4 a^{2} x^{2}\right)\left(3 a^{2}\right)\right]+\left[3\left(3 x^{2}-2 a x\right)\left(9 a^{4}\right)\right]+\left[1\left(27 a^{6}\right)\right]$
$\Rightarrow 27 x^{6}-8 a^{3} x^{3}-54 a x^{5}+36 a^{2} x^{4}+81 a^{2} x^{4}-108 x^{3} a^{3}+36 a^{4} x^{2}+81 a^{4} x^{2}-54 a^{5} x+27 a^{6}$
On rearranging
Ans) $27 x^{6}-54 a x^{5}+117 a^{2} x^{4}-116 x^{3} a^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6}$
- JEE Main
- Exam Pattern
- Previous Year Papers
- PYQ Chapterwise
- Physics
- Kinematics 1D
- Kinemetics 2D
- Friction
- Work, Power, Energy
- Centre of Mass and Collision
- Rotational Dynamics
- Gravitation
- Calorimetry
- Elasticity
- Thermal Expansion
- Heat Transfer
- Kinetic Theory of Gases
- Thermodynamics
- Simple Harmonic Motion
- Wave on String
- Sound waves
- Fluid Mechanics
- Electrostatics
- Current Electricity
- Capacitor
- Magnetism and Matter
- Electromagnetic Induction
- Atomic Structure
- Dual Nature of Matter
- Nuclear Physics
- Radioactivity
- Semiconductors
- Communication System
- Error in Measurement & instruments
- Alternating Current
- Electromagnetic Waves
- Wave Optics
- X-Rays
- All Subjects
- Physics
- Motion in a Plane
- Law of Motion
- Work, Energy and Power
- Systems of Particles and Rotational Motion
- Gravitation
- Mechanical Properties of Solids
- Mechanical Properties of Fluids
- Thermal Properties of matter
- Thermodynamics
- Kinetic Theory
- Oscillations
- Waves
- Electric Charge and Fields
- Electrostatic Potential and Capacitance
- Current Electricity
- Thermoelectric Effects of Electric Current
- Heating Effects of Electric Current
- Moving Charges and Magnetism
- Magnetism and Matter
- Electromagnetic Induction
- Alternating Current
- Electromagnetic Wave
- Ray Optics and Optical Instruments
- Wave Optics
- Dual Nature of Radiation and Matter
- Atoms
- Nuclei
- Semiconductor Electronics: Materials, Devices and Simple Circuits.
- Chemical Effects of Electric Current,
All Study Material
- JEE Main
- Exam Pattern
- Previous Year Papers
- PYQ Chapterwise
- Physics
- Kinematics 1D
- Kinemetics 2D
- Friction
- Work, Power, Energy
- Centre of Mass and Collision
- Rotational Dynamics
- Gravitation
- Calorimetry
- Elasticity
- Thermal Expansion
- Heat Transfer
- Kinetic Theory of Gases
- Thermodynamics
- Simple Harmonic Motion
- Wave on String
- Sound waves
- Fluid Mechanics
- Electrostatics
- Current Electricity
- Capacitor
- Magnetism and Matter
- Electromagnetic Induction
- Atomic Structure
- Dual Nature of Matter
- Nuclear Physics
- Radioactivity
- Semiconductors
- Communication System
- Error in Measurement & instruments
- Alternating Current
- Electromagnetic Waves
- Wave Optics
- X-Rays
- All Subjects
- Physics
- Motion in a Plane
- Law of Motion
- Work, Energy and Power
- Systems of Particles and Rotational Motion
- Gravitation
- Mechanical Properties of Solids
- Mechanical Properties of Fluids
- Thermal Properties of matter
- Thermodynamics
- Kinetic Theory
- Oscillations
- Waves
- Electric Charge and Fields
- Electrostatic Potential and Capacitance
- Current Electricity
- Thermoelectric Effects of Electric Current
- Heating Effects of Electric Current
- Moving Charges and Magnetism
- Magnetism and Matter
- Electromagnetic Induction
- Alternating Current
- Electromagnetic Wave
- Ray Optics and Optical Instruments
- Wave Optics
- Dual Nature of Radiation and Matter
- Atoms
- Nuclei
- Semiconductor Electronics: Materials, Devices and Simple Circuits.
- Chemical Effects of Electric Current,