Question:
What is the ratio of the volume of a cube to that of a sphere which will fit inside it?
Solution:
Ratio of sphere
$=\frac{1}{2} \times$ side of cube
$r=\frac{a}{2}$
Now,
Volume of cube $v_{1}=a^{3}$
Volume of sphere
$v_{2}=\frac{4}{3} \pi r^{3}$
$=\frac{4}{3} \pi\left(\frac{a}{2}\right)^{3}$
$=\frac{4}{3} \pi \frac{a^{3}}{8}$
$v_{2}=\frac{1}{6} \pi a^{3}$
The ratio of their volumes
$v_{1}: v_{2}=a^{3}: \frac{1}{6} \pi a^{3}$
$\frac{v_{1}}{v_{2}}=\frac{a^{3}}{\frac{1}{6} \pi a^{3}}$
$=\frac{6}{\pi}$
Hence, $v_{1}: v_{2}=6: \pi$