Which of the following numbers is not equal to $\frac{-8}{27} ?$
(a) $\left(\frac{2}{3}\right)^{-3}$
(b) $-\left(\frac{2}{3}\right)^{3}$
(c) $\left(-\frac{2}{3}\right)^{3}$
(d) $\left(\frac{-2}{3}\right) \times\left(\frac{-2}{3}\right) \times\left(\frac{-2}{3}\right)$
(a) $\left(\frac{2}{3}\right)^{-3}$
We can write $\frac{-8}{27}$ as $\frac{-2 \times(-2) \times(-2)}{3 \times 3 \times 3}$. It can be written in the forms given below.
$\frac{-2 \times(-2) \times(-2)}{3 \times 3 \times 3}=-\frac{2 \times 2 \times 2}{3 \times 3 \times 3}$ ---> work out the minuses
$=-\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3}$
$=-\left(\frac{2}{3}\right)^{3}$
Hence, option (b) is equal to $\frac{-8}{27}$.
We can also write:
$\frac{-2 \times(-2) \times(-2)}{3 \times 3 \times 3}=\left(-\frac{2}{3}\right) \times\left(-\frac{2}{3}\right) \times\left(-\frac{2}{3}\right)$
$=-\left(\frac{2}{3}\right)^{3}$
Hence, option (c) is also equal to $\frac{-8}{27}$.
We can also write:
$\frac{-2 \times(-2) \times(-2)}{3 \times 3 \times 3}=\left(-\frac{2}{3}\right) \times\left(-\frac{2}{3}\right) \times\left(-\frac{2}{3}\right)$
Hence, option (d) is also equal to $-\frac{8}{27}$.
This leaves out option (a) as the one not equal to $-\frac{8}{27}$.