Question.
Write first four terms of the AP, when the first term a and the common difference d are given as follows:
(i) $a=10, d=10$
(ii) $a=-2 \quad d=0$
(iii) $\mathrm{a}=4, \mathrm{~d}=-3$
(iv) $\mathrm{a}=-1, \mathrm{~d}=1 / 2$
(v) $\mathrm{a}=-1.25, \quad \mathrm{~d}=-0.25$
Write first four terms of the AP, when the first term a and the common difference d are given as follows:
(i) $a=10, d=10$
(ii) $a=-2 \quad d=0$
(iii) $\mathrm{a}=4, \mathrm{~d}=-3$
(iv) $\mathrm{a}=-1, \mathrm{~d}=1 / 2$
(v) $\mathrm{a}=-1.25, \quad \mathrm{~d}=-0.25$
Solution:
(i) $\mathrm{t}_{1}=\mathrm{a}=10$,
$t_{2}=10+d=10+10=20$
$t_{3}=20+d=20+10=30$
$\mathrm{t}_{4}=30+\mathrm{d}=30+10=40, \ldots .$
Thus, the AP is $10,20,30,40, \ldots$
(ii) Given $\mathrm{a}=-2$ and $\mathrm{d}=0$
$\mathrm{t}_{1}=-2, \mathrm{t}_{2}=-2+0=-2$
$t_{3}=-2+0=-2, t_{4}=-2+0=-2, \ldots .$
Thus, the AP is $-2,-2,-2,-2, \ldots$
(iii) $\mathrm{a}=4, \mathrm{~d}=-3$
$\mathrm{t}_{1}=\mathrm{a}=4$
$\mathrm{t}_{2}=\mathrm{a}_{1}+\mathrm{d}=4-3=1$
$\mathrm{t}_{3}=\mathrm{a}_{2}+\mathrm{d}=1-3=-2$
$\mathrm{t}_{4}=\mathrm{a}_{3}+\mathrm{d}=-2-3=-5$
Therefore, the series will be $4,1,-2-5 \ldots$
First four terms of this A.P. will be $4,1,-2$ and $-5$.
(iv) $\mathrm{a}=-1, \mathrm{~d}=\frac{1}{2}$
$\mathrm{t}_{1}=\mathrm{a}=-1$
$\mathrm{t}_{2}=\mathrm{a}_{1}+\mathrm{d}=-1+\frac{1}{2}=-\frac{1}{2}$
$\mathrm{t}_{3}=\mathrm{a}_{2}+\mathrm{d}=-\frac{1}{2}+\frac{1}{2}=0$
Clearly, the series will be
$-1,-\frac{1}{2}, 0, \frac{1}{2} \cdots \cdots \cdots \cdots$
First four terms of this A.P. will be
$-1,-\frac{1}{2}, 0$ and $-\frac{1}{2}$
(v) $\mathrm{a}=-1.25, \mathrm{~d}=-0.25$
$t_{1}=a=-1.25$
$\mathrm{t}_{2}=\mathrm{a}_{1}+\mathrm{d}=-1.25-0.25=-1.50$
$\mathrm{t}_{3}=\mathrm{a}_{2}+\mathrm{d}=-1.50-0.25=-1.75$
$\mathrm{t}_{4}=\mathrm{a}_{3}+\mathrm{d}=-1.75-0.25=-2.00$
Clearly, the series will be $-1.25,-1.50,-1.75$, $\begin{array}{lllll}-2.00 & \ldots & \ldots & \ldots .\end{array}$
First four terms of this A.P. will be $-1.25$,
$-1.50,-1.75$ and $-2.00$
(i) $\mathrm{t}_{1}=\mathrm{a}=10$,
$t_{2}=10+d=10+10=20$
$t_{3}=20+d=20+10=30$
$\mathrm{t}_{4}=30+\mathrm{d}=30+10=40, \ldots .$
Thus, the AP is $10,20,30,40, \ldots$
(ii) Given $\mathrm{a}=-2$ and $\mathrm{d}=0$
$\mathrm{t}_{1}=-2, \mathrm{t}_{2}=-2+0=-2$
$t_{3}=-2+0=-2, t_{4}=-2+0=-2, \ldots .$
Thus, the AP is $-2,-2,-2,-2, \ldots$
(iii) $\mathrm{a}=4, \mathrm{~d}=-3$
$\mathrm{t}_{1}=\mathrm{a}=4$
$\mathrm{t}_{2}=\mathrm{a}_{1}+\mathrm{d}=4-3=1$
$\mathrm{t}_{3}=\mathrm{a}_{2}+\mathrm{d}=1-3=-2$
$\mathrm{t}_{4}=\mathrm{a}_{3}+\mathrm{d}=-2-3=-5$
Therefore, the series will be $4,1,-2-5 \ldots$
First four terms of this A.P. will be $4,1,-2$ and $-5$.
(iv) $\mathrm{a}=-1, \mathrm{~d}=\frac{1}{2}$
$\mathrm{t}_{1}=\mathrm{a}=-1$
$\mathrm{t}_{2}=\mathrm{a}_{1}+\mathrm{d}=-1+\frac{1}{2}=-\frac{1}{2}$
$\mathrm{t}_{3}=\mathrm{a}_{2}+\mathrm{d}=-\frac{1}{2}+\frac{1}{2}=0$
Clearly, the series will be
$-1,-\frac{1}{2}, 0, \frac{1}{2} \cdots \cdots \cdots \cdots$
First four terms of this A.P. will be
$-1,-\frac{1}{2}, 0$ and $-\frac{1}{2}$
(v) $\mathrm{a}=-1.25, \mathrm{~d}=-0.25$
$t_{1}=a=-1.25$
$\mathrm{t}_{2}=\mathrm{a}_{1}+\mathrm{d}=-1.25-0.25=-1.50$
$\mathrm{t}_{3}=\mathrm{a}_{2}+\mathrm{d}=-1.50-0.25=-1.75$
$\mathrm{t}_{4}=\mathrm{a}_{3}+\mathrm{d}=-1.75-0.25=-2.00$
Clearly, the series will be $-1.25,-1.50,-1.75$, $\begin{array}{lllll}-2.00 & \ldots & \ldots & \ldots .\end{array}$
First four terms of this A.P. will be $-1.25$,
$-1.50,-1.75$ and $-2.00$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.