Question:
Write the number of points of intersection of the curves $2 y=1$ and $y=\cos x, 0 \leq x \leq 2 \pi$.
Solution:
Given curves: $2 y=1$ and $y=\cos x$
Now,
$2 y=1 \Rightarrow y=\frac{1}{2}$
Also,
$\cos x=y$
$\Rightarrow \cos x=\frac{1}{2}$
$\Rightarrow \cos x=\cos \left(\frac{\pi}{3}\right)$ and $\cos x=\cos \left(\frac{4 \pi}{3}\right)$
$\Rightarrow x=2 n \pi \pm \frac{\pi}{3} \quad$ or $\quad x=2 n \pi \pm \frac{4 \pi}{3}$
By putting $n=0$, we get:
$x=\frac{\pi}{3}$ and $x=\frac{2 \pi}{3}$
For the other value of n, the value of x will not satisfy the given condition.
Hence, the number of points of intersection of the curves is two, i.e., $\frac{\pi}{3}$ and $\frac{4 \pi}{3}$.