Question:
Write the solution set of the equation $(2 \cos x+1)(4 \cos x+5)=0$ in the interval $[0,2 \pi]$.
Solution:
Given: $(2 \cos x+1)(4 \cos x+5)=0$
Now, $2 \cos x+1=0$ or $4 \cos x+5=0$
$\Rightarrow \cos x=-\frac{1}{2}$ or $\cos x=-\frac{5}{4}$
$\cos x=-\frac{5}{4}$ is not possible.
Thus, we have:
$\cos x=-\frac{1}{2}$
$\Rightarrow \cos x=\cos \frac{2 \pi}{3}$
$\Rightarrow x=2 n \pi \pm \frac{2 \pi}{3}$
By putting n = 0 and n = 1 in the above equation, we get:
$x=\frac{2 \pi}{3}$ or $x=\frac{4 \pi}{3}$ in the interval $[0,2 \pi]$
For the other value of n, x will not satisfy the given condition.
$\therefore x=\frac{2 \pi}{3}$ and $\frac{4 \pi}{3}$