Write the value of sin A cos (90° − A) + cos A sin (90° − A).

Question:

Write the value of $\sin A \cos \left(90^{\circ}-A\right)+\cos A \sin \left(90^{\circ}-A\right)$.

Solution:

We have,

$\sin A \cos \left(90^{\circ}-A\right)+\cos A \sin \left(90^{\circ}-A\right)=\sin A \sin A+\cos A \cos A$

$=\sin ^{2} A+\cos ^{2} A$

We know that, $\sin ^{2} A+\cos ^{2} A=1$

Therefore, $\sin A \cos \left(90^{\circ}-A\right)+\cos A \sin \left(90^{\circ}-A\right)=1$

 

Leave a comment