Ion cyclotron resonance frequency (ICRF) heating has been an essential component in the development of high power H-mode scenarios in the Jet European Torus ITER-like wall (JET-ILW). The ICRF performance was improved by enhancing the antenna-plasma coupling with dedicated main chamber gas injection, including the preliminary minimization of RF-induced plasma-wall interactions, while the RF heating scenarios where optimized for core impurity screening in terms of the ion cyclotron resonance position and the minority hydrogen concentration. The impact of ICRF heating on core impurity content in a variety of 2.5 MA JET-ILW H-mode plasmas will be presented, and the steps that were taken for optimizing ICRF heating in these experiments will be reviewed.

VL - 56 UR - http://www.euro-fusionscipub.org/wp-content/uploads/2015/09/WPJET1PR1528.pdf IS - 3 U1 -FP

U2 -TP

U5 - d602ccdf3e42dd82b551d41759691058 ER - TY - JOUR T1 - Real-time control of ELM and sawtooth frequencies: similarities and differences JF - Nuclear Fusion Y1 - 2016 A1 - Lennholm, M. A1 - Frigione, D. A1 - Graves, J. P. A1 - Beaumont, P. S. A1 - Blackman, T. A1 - Carvalho, I. S. A1 - Chapman, I. A1 - Dumont, R. A1 - Felton, R. A1 - Tsalas, M. A1 - Garzotti, L. A1 - Goniche, M. A1 - Goodyear, A. A1 - Grist, D. A1 - Jachmich, S. A1 - Johnson, T. A1 - Lang, P. A1 - Lerche, E. A1 - de la Luna, E. A1 - Monakhov, I. A1 - Mooney, R. A1 - Morris, J. A1 - M F F Nave A1 - Reich, M. A1 - Rimini, F. A1 - Sips, G. A1 - H Sheikh A1 - Sozzi, C. A1 - JET Contributors AB -ELMs and Sawteeth, located in different parts of the plasma, are similar from a control engineering point of view. Both manifest themselves through quiescent periods interrupted by periodic collapses. For both, large collapses, following long quiescent periods, have detrimental effects while short periods are associated with decreased confinement. Following the installation of the all metal ‘ITER like wall’ on JET, sawteeth and ELMs also play an important role by expelling tungsten from the core and edge of the plasma respectively. Control of tungsten has therefore been added to divertor heat load reduction, NTM avoidance and helium ash removal as reasons for requiring ELM and sawtooth control. It is therefore of interest to implement control systems to maintain the sawtooth and ELM frequencies in the desired ranges. On JET, ELM frequency control uses radial field ‘kicks’ and pellet and gas injection as actuators, while sawtooth control uses ion cyclotron resonance heating (ICRH). JET experiments have, for the first time, established feedback control of the ELM frequency, via real time variation of the injected gas flow [1]. Using this controller in conjunction with pellet injection allows the ELM frequency to be kept as required despite variations in pellet ELM triggering efficiency. JET Sawtooth control experiments have, for the first time, demonstrated that low field side ICRH, as foreseen for ITER, can shorten sawteeth lengthened by central fast ions [2]. The development of ELM and sawtooth control could be key to achieve stable high performance JET discharges with minimal tungsten content. Integrating such schemes into an overall control strategy will be required in future tokamaks and gaining experience on current tokamaks is essential.

VL - 56 UR - http://www.euro-fusionscipub.org/wp-content/uploads/2015/05/WPJET1PR1501.pdf IS - 1 U1 -FP

U2 -PDG

U5 - 49c8929abb0e88d6ddf1d8e1ddde5233 ER - TY - JOUR T1 - Progress at JET in integrating ITER-relevant core and edge plasmas within the constraints of an ITER-like wall JF - Plasma Physics and Controlled Fusion Y1 - 2015 A1 - Giroud, C. A1 - Jachmich, S. A1 - Jacquet, P. A1 - Jarvinen, A. A1 - Lerche, E. A1 - Rimini, F. A1 - Aho-Mantila, L. A1 - Aiba, N. A1 - Balboa, I. A1 - da Silva Aresta Belo, P. A1 - Angioni, C. A1 - Beurskens, M. A1 - Brezinsek, S. A1 - Casson, F. J. A1 - Coffey, I. A1 - Cunningham, G. A1 - Delabie, E. A1 - Devaux, S. A1 - Drewelow, P. A1 - Frassinetti, L. A1 - Figueiredo, A. A1 - Huber, A. A1 - Hillesheim, J. A1 - Garzotti, L. A1 - Goniche, M. A1 - Groth, M. A1 - Hyun-Tae Kim A1 - Leyland, M. A1 - Lomas, P. A1 - Maddison, G. A1 - Marsen, S. A1 - Matthews, G. A1 - Meigs, A. A1 - Menmuir, S. A1 - Putterich, T. A1 - G. van Rooij A1 - Saarelma, S. A1 - Stamp, M. A1 - Urano, H. A1 - Webster, A. A1 - JET-EFDA Contributors AB - This paper reports the progress made at JET-ILW on integrating the requirements of the reference ITER baseline scenario with normalized confinement factor of 1, at a normalized pressure of 1.8 together with partially detached divertor whilst maintaining these conditions over many energy confinement times. The 2.5 MA high triangularity ELMy H-modes are studied with two different divertor configurations with D-gas injection and nitrogen seeding. The power load reduction with N seeding is reported. The relationship between an increase in energy confinement and pedestal pressure with triangularity is investigated. The operational space of both plasma configurations is studied together with the ELM energy losses and stability of the pedestal of unseeded and seeded plasmas. The achievement of stationary plasma conditions over many energy confinement times is also reported. VL - 57 UR - http://www.iop.org/Jet/fulltext/EFDP14021.pdf IS - 3 U1 - FP U2 - PDG U5 - 4b7265a10a94f029cf4f14cd047251e2 ER - TY - JOUR T1 - Sawtooth control in JET with ITER relevant low field side resonance ion cyclotron resonance heating and ITER-like wall JF - Plasma Physics and Controlled Fusion Y1 - 2015 A1 - Graves, J. P. A1 - Lennholm, M. A1 - Chapman, I.T. A1 - Lerche, E. A1 - Reich, M. A1 - Alper, B. A1 - Bobkov, V. A1 - Dumont, R. A1 - Faustin, J. M. A1 - Jacquet, P. A1 - Jaulmes, F. A1 - Johnson, T. A1 - Keeling, D. L. A1 - Liu, Y. Q. A1 - Nicolas, T. A1 - Tholerus, S. A1 - Blackman, T. A1 - Carvalho, I. S. A1 - Coelho, R. A1 - Van Eester, D. A1 - Felton, R. A1 - Goniche, M. A1 - Kiptily, V. A1 - Monakhov, I. A1 - M F F Nave A1 - Perez von Thun, C. A1 - Sabot, R. A1 - Sozzi, C. A1 - Tsalas, M. AB - New experiments at JET with the ITER-like wall show for the first time that ITER-relevant low field side resonance first harmonic ion cyclotron resonance heating (ICRH) can be used to control sawteeth that have been initially lengthened by fast particles. In contrast to previous (Graves et al 2012 Nat. Commun. 3 624) high field side resonance sawtooth control experiments undertaken at JET, it is found that the sawteeth of L-mode plasmas can be controlled with less accurate alignment between the resonance layer and the sawtooth inversion radius. This advantage, as well as the discovery that sawteeth can be shortened with various antenna phasings, including dipole, indicates that ICRH is a particularly effective and versatile tool that can be used in future fusion machines for controlling sawteeth. Without sawtooth control, neoclassical tearing modes (NTMs) and locked modes were triggered at very low normalised beta. High power H-mode experiments show the extent to which ICRH can be tuned to control sawteeth and NTMs while simultaneously providing effective electron heating with improved flushing of high Z core impurities. Dedicated ICRH simulations using SELFO, SCENIC and EVE, including wide drift orbit effects, explain why sawtooth control is effective with various antenna phasings and show that the sawtooth control mechanism cannot be explained by enhancement of the magnetic shear. Hybrid kinetic-magnetohydrodynamic stability calculations using MISHKA and HAGIS unravel the optimal sawtooth control regimes in these ITER relevant plasma conditions. VL - 57 IS - 1 U1 - FP U2 - CPP-HT U5 - 350e787a0d57db2f73d24baa18668ef0 ER - TY - JOUR T1 - On the challenge of plasma heating with the JET metallic wall JF - Nuclear Fusion Y1 - 2014 A1 - Mayoral, M. L. A1 - Bobkov, V. A1 - Czarnecka, A. A1 - Day, I. A1 - Ekedahl, A. A1 - Jacquet, P. A1 - Goniche, M. A1 - King, R. A1 - Kirov, K. A1 - Lerche, E. A1 - J. Mailloux A1 - Van Eester, D. A1 - Asunta, O. A1 - Challis, C. A1 - Ciric, D. A1 - Coenen, J. W. A1 - Colas, L. A1 - Giroud, C. A1 - Graham, M. A1 - Jenkins, I. A1 - Joffrin, E. A1 - Jones, T. A1 - King, D. A1 - Kiptily, V. A1 - Klepper, C. C. A1 - Maggi, C. A1 - Maggiora, R. A1 - Marcotte, F. A1 - Matthews, G. A1 - Milanesio, D. A1 - Monakhov, I. A1 - Nightingale, M. A1 - Neu, R. A1 - Ongena, J. A1 - T. Puetterich A1 - Riccardo, V. A1 - Rimini, F. A1 - Strachan, J. A1 - Surrey, E. A1 - Thompson, V. A1 - G. J. van Rooij AB - The major aspects linked to the use of the JET auxiliary heating systems: NBI, ICRF and LHCD, in the new JET ITER-like wall are presented. We show that although there were issues related to the operation of each system, efficient and safe plasma heating was obtained with room for higher power. For the NBI up to 25.7 MW was safely injected; issues that had to be tackled were mainly the beam shine-through and beam re-ionization before its entrance into the plasma. For the ICRF system, 5 MW were coupled in L-mode and 4 MW in H-mode; the main areas of concern were RF sheaths related heat loads and impurities production. For the LH, 2.5 MW were delivered without problems; arcing and generation of fast electron beams in front of the launcher that can lead to high heat loads were the keys issues. For each system, an overview will be given of: the main modifications implemented for safe use, their compatibility with the new metallic wall, the differences in behaviour compared with the previous carbon wall, with emphasis on heat loads and impurity content in the plasma. VL - 54 SN - 0029-5515; 1741-4326 UR - http://www.iop.org/Jet/article?EFDP13021&EFDP13030 IS - 3 U1 - PSI U2 - PSI-E U5 - e825dae3f38cd6ab213009ee6fd40383 ER - TY - JOUR T1 - Analysis of electron cyclotron emission by fast electrons generated by lower hybrid current drive at JET JF - Plasma Physics and Controlled Fusion Y1 - 2012 A1 - K K Kirov A1 - Baranov, Y. A1 - Gerbaud, T. A1 - Goniche, M. A1 - J. Mailloux A1 - Mayoral, M. L. A1 - Ongena, J. A1 - Schmuck, S. AB - Heating and driving non-inductive current in plasmas by means of radio frequency waves in the range of the lower hybrid (LH) frequencies is important for steady-state (SS) operation in fusion (Fish 1987 Rev. Mod. Phys. 59 [http://dx.doi.org/10.1103/RevModPhys.59.175] 175 ). The penetration of LH waves at higher densities has recently been reviewed (Goniche et al 2010 Plasma Phys. Control. Fusion 52 [http://dx.doi.org/10.1088/0741-3335/52/12/124031] 124031 ) in order to assess the lower hybrid current drive (LHCD) performance under conditions as close as possible to the ITER SS scenario. The analysis of various experiments performed on C-Mod, FTU, Tore Supra and JET indicates (Goniche et al 2010 Plasma Phys. Control. Fusion 52 [http://dx.doi.org/10.1088/0741-3335/52/12/124031] 124031 ) a degradation of the current drive (CD) efficiency when the plasma density is increased, while at the same time the LH wave absorption shifts to the plasma periphery. JET pulses in H-mode confirm this trend and in addition it is found that the accessibility condition is not the main parameter to explain the reduction in the CD efficiency. This paper further discusses the LH deposition in H-mode plasmas and in particular it shows that lower pedestal density and higher temperature are beneficial regarding the LH wave penetration. The investigation presented here is based on the analysis of the electron cyclotron emission (ECE) spectra in plasmas with fast electrons generated by LH waves. The study includes the numerical calculation of the ECE intensity and a comparison with experimental profiles in the plasma periphery for optically thin frequencies. VL - 54 UR - http://stacks.iop.org/0741-3335/54/i=7/a=074003 U1 - FP U2 - FP U5 - 2ef766c5e7161df67c140ef195a599da ER - TY - JOUR T1 - TORE SUPRA Team Mmembers 1988-2008 JF - Fusion Science and Technology Y1 - 2009 A1 - Abgrall, R. A1 - Achard, M. H. A1 - Adam, J. A1 - Agarici, G. A1 - Agostini, E. A1 - Airaj, M. A1 - Albajar-Vinas, F. A1 - Allegretti, L. A1 - Allibert, J. P. A1 - Alliez, J. C. A1 - Allouche, A. A1 - Andreoletti, J. A1 - Ane, J. M. A1 - Angelino, P. A1 - Aniel, T. A1 - Antar, G. A1 - Arcis, N. A1 - Argouarch, A. A1 - Arnas, C. A1 - Arnoux, G. A1 - Arslanbekov, R. A1 - Artaud, J. F. A1 - Asp, E. A1 - Assas, S. A1 - Atttuel, G. A1 - Aymar, R. A1 - Azeroual, A. A1 - Balme, S. A1 - Barana, O. A1 - Bareyt, B. A1 - Basiuk, V. A1 - Basko, M. A1 - Bayetti, P. A1 - Baylor, L. A1 - Beaumont, B. A1 - Becherer, R. A1 - Becoulet, A. A1 - Becoulet, M. A1 - Begrambekov, L. A1 - Benkadda, S. A1 - Benoit, F. A1 - Bergeaud, V. A1 - Berger-By, G. A1 - Berio, S. A1 - Bernascolle, P. A1 - Bernier, N. A1 - Berroukeche, M. A1 - Bertrand, B. A1 - Bessette, D. A1 - Beyer, P. A1 - Bibet, P. A1 - Bizzaro, J. A1 - Blanchard, P. A1 - Blum, J. A1 - Boddeker, S. A1 - Boilson, D. A1 - Mardion, G. B. A1 - Bonnel, P. A1 - Bonnin, X. A1 - Boscary, J. A1 - Bosia, G. A1 - Bottereau, J. M. A1 - Bottiglioni, F. A1 - Bottollier-Curtet, H. A1 - Bouchand, C. A1 - Bouligand, G. A1 - Bouquey, F. A1 - Bourdelle, C. A1 - Bregeon, R. A1 - Bremond, F. A1 - Bremond, S. A1 - Breton, C. A1 - Breton, M. A1 - Brosset, C. A1 - Brugnetti, R. A1 - Bruneau, J. L. A1 - Bucalossi, J. A1 - Budny, R. V. A1 - Buravand, Y. A1 - Bush, C. A1 - Bussac, M. N. A1 - Cambe, A. A1 - Capes, H. A1 - Capitain, J. J. A1 - Cara, P. A1 - Carbonnier, J. L. A1 - Carpentier, S. A1 - Carrasco, J. A1 - Casati, A. A1 - Chaibi, O. A1 - Chamouard, C. A1 - Chantant, M. A1 - Chappuis, P. A1 - Chatain, D. A1 - Chatelier, E. A1 - Chatelier, M. A1 - Chatenet, J. H. A1 - Chen, X. P. A1 - Cherigier, L. A1 - Chevet, G. A1 - Chiarazzo, L. A1 - Ciazynski, D. A1 - Ciraolo, G. A1 - Cismondi, F. A1 - Clairet, F. A1 - Clary, J. A1 - Clement, C. A1 - Colas, L. A1 - Commaux, N. A1 - Corbel, E. A1 - Cordier, J. J. A1 - Corre, Y. A1 - Costanzo, L. A1 - Cote, A. A1 - Coulon, J. P. A1 - Courtois, L. A1 - Courtois, X. A1 - Couturier, B. A1 - Crenn, J. P. A1 - Cristofani, P. A1 - Crouseilles, N. A1 - Czarny, O. A1 - Rosa, P. D. A1 - Darbos, C. A1 - Darmet, G. A1 - Davi, M. A1 - Daviot, R. A1 - De Esch, H. A1 - De Gentile, B. A1 - De Haas, J. C. A1 - De La Cal, E. A1 - De Michelis, C. A1 - Deck, C. A1 - Decker, J. A1 - Decool, P. A1 - Degond, P. A1 - Dejarnac, R. A1 - Delchambre, E. A1 - Delmas, E. A1 - Delpech, L. A1 - Demarthe, H. A1 - Dentan, M. A1 - Depret, G. A1 - Deschamps, P. A1 - Desgranges, C. A1 - Devynck, P. A1 - Doceul, L. A1 - Dolgetta, N. A1 - Doloc, C. A1 - Dong, Y. A1 - Dore, P. A1 - Douai, D. A1 - Dougnac, H. A1 - Drawin, H. W. A1 - Druaux, J. A1 - Druetta, M. A1 - Dubois, F. A1 - Dubois, M. A1 - Dubuit, N. A1 - Duchateau, J. L. A1 - de Wit, T. D. A1 - Dufour, E. A1 - Dumont, R. A1 - Dunand, G. A1 - Dupas, L. A1 - Duran, Y. A1 - Durocher, A. A1 - Edery, D. A1 - Ekedahl, A. A1 - Elbeze, D. A1 - Eriksson, L. G. A1 - Escande, D. A1 - Escarguel, A. A1 - Escourbiac, F. A1 - Evans, T. A1 - Faisse, F. A1 - Falchetto, G. A1 - Fall, T. A1 - Farge, M. A1 - Farjon, J. L. A1 - Faudot, E. A1 - Fazilleau, P. A1 - Fedorczak, N. A1 - Fenzi-Bonizec, C. A1 - Ferron, J. R. A1 - Fidone, I. A1 - Figarella, C. A1 - Fleurence, E. A1 - Fleury, I. A1 - Fois, M. A1 - Forrest, C. A1 - Foster, C. A. A1 - Fouquet, S. A1 - Fourment, C. A1 - Fraboulet, D. A1 - Francois, P. A1 - Franel, B. A1 - Frigione, D. A1 - Froissard, P. A1 - Fubiani, G. A1 - Fuchs, V. A1 - Fumelli, M. A1 - Gagey, B. A1 - Galindo, V. A1 - Gambier, D. A1 - Garampon, L. A1 - Garbet, X. A1 - Garbil, R. A1 - J. Garcia A1 - Gardarein, J. L. A1 - Gargiulo, L. A1 - Garibaldi, P. A1 - Garin, P. A1 - Gauthier, E. A1 - Geraud, A. A1 - Gerbaud, T. A1 - Gervais, F. A1 - Geynet, M. A1 - Ghendrih, P. A1 - Gianakon, T. A1 - Giannella, R. A1 - Gil, C. A1 - Girard, J. P. A1 - Giruzzi, G. A1 - Godbert-Mouret, L. A1 - Gomez, P. A1 - Goniche, M. A1 - Gordeev, A. A1 - Granata, G. A1 - Grandgirard, V. A1 - Gravier, R. A1 - Gravil, B. A1 - Gregoire, M. A1 - Gregoire, S. A1 - Grelot, P. A1 - Gresillon, D. A1 - Grisolia, C. A1 - Gros, G. A1 - Grosman, A. A1 - Grua, P. A1 - Guerin, O. A1 - Guigon, R. A1 - Guilhem, D. A1 - Guillerminet, B. A1 - Guirlet, R. A1 - Guiziou, L. A1 - Gunn, J. A1 - Hacquin, S. A1 - Harris, J. A1 - Haste, G. A1 - Hatchressian, J. C. A1 - Hemsworth, R. A1 - Hennequin, P. A1 - Hennion, F. A1 - Hennion, V. A1 - Henry, D. A1 - Hernandez, C. A1 - Hertout, P. A1 - Hess, W. A1 - Hesse, M. A1 - Heuraux, S. A1 - Hillairet, J. A1 - Hoang, G. T. A1 - Hogan, J. A1 - Hong, S. H. A1 - Honore, C. A1 - Horton, L. A1 - Horton, W. W. A1 - Houlberg, W. A. A1 - Hourtoule, J. A1 - Houry, M. A1 - Houy, P. A1 - How, J. A1 - Hron, M. A1 - Hutter, T. A1 - Huynh, P. A1 - Huysmans, G. A1 - Idmtal, J. A1 - Imbeaux, F. A1 - Isler, R. A1 - Jaben, C. A1 - Jacquinot, J. A1 - Jacquot, C. A1 - Jager, B. A1 - Jaunet, M. A1 - Javon, C. A1 - Jelea, A. A1 - Jequier, F. A1 - Jie, Y. X. A1 - Jimenez, R. A1 - Joffrin, E. A1 - Johner, J. A1 - Jourd'heuil, L. A1 - Journeaux, J. Y. A1 - Joyer, P. A1 - Ju, M. A1 - Jullien, F. A1 - Junique, F. A1 - Kaye, S. M. A1 - Kazarian, F. A1 - Khodja, H. A1 - Klepper, C. A1 - Kocan, M. A1 - Koski, J. A1 - Krivenski, V. A1 - Krylov, A. A1 - Kupfer, K. A1 - Kuus, H. A1 - Labit, B. A1 - Laborde, L. A1 - Lacroix, B. A1 - Ladurelle, L. A1 - Lafon, D. A1 - Lamaison, V. A1 - Laporte, P. A1 - Lasalle, J. A1 - Latu, G. A1 - Laugier, F. A1 - Laurent, L. A1 - Lausenaz, Y. A1 - Laviron, C. A1 - Layet, J. M. A1 - Le Bris, A. A1 - Le Coz, F. A1 - Le Niliot, C. A1 - Le Bris, A. A1 - Leclert, G. A1 - Lecoustey, P. A1 - Ledyankinc, A. A1 - Leloup, C. A1 - Lennholm, M. A1 - Leroux, F. A1 - Li, Y. Y. A1 - Libeyre, P. A1 - Linez, F. A1 - Lipa, M. A1 - Lippmann, S. A1 - X. Litaudon A1 - Liu, W. D. A1 - Loarer, T. A1 - Lott, F. A1 - Lotte, P. A1 - Lowry, C. A1 - Luciani, J. F. A1 - Lutjens, H. A1 - Luty, J. A1 - Lutz, T. A1 - Lyraud, C. A1 - Maas, A. A1 - Macor, A. A1 - Madeleine, S. A1 - Magaud, P. A1 - Maget, P. A1 - Magne, R. A1 - Mahdavi, A. A1 - Mahe, F. A1 - J. Mailloux A1 - Mandl, W. A1 - Manenc, L. A1 - Marandet, Y. A1 - Marbach, G. A1 - Marechal, J. L. A1 - Martin, C. A1 - Martin, G. A1 - Martin, V. A1 - Martinez, A. A1 - Martins, J. P. A1 - Maschke, E. A1 - Masse, L. A1 - Masset, R. A1 - Massmann, P. A1 - Mattioli, M. A1 - Mayaux, G. A1 - Mayoral, M. L. A1 - Mazon, D. A1 - McGrath, R. A1 - Mercier, C. A1 - Meslin, B. A1 - Meunier, L. A1 - Meyer, O. A1 - Michelot, Y. A1 - Million, L. A1 - Millot, P. A1 - Minguella, G. A1 - Minot, F. A1 - Mioduszewski, P. A1 - Misguich, J. H. A1 - Miskane, F. A1 - Missirlian, M. A1 - Mitteau, R. A1 - Moerel, F. A1 - Mollard, P. A1 - Monakhov, I. A1 - Moncada, V. A1 - Moncel, L. A1 - Monier-Garbet, P. A1 - Moreau, D. A1 - Moreau, F. A1 - Moreau, P. A1 - Morera, J. P. A1 - Moret, J. M. A1 - Moulin, B. A1 - Moulin, D. A1 - Mourgues, F. A1 - Moustier, M. A1 - Nakach, R. A1 - Nannini, M. A1 - Nanobashvili, I. A1 - Nardon, E. A1 - Navarra, P. A1 - Nehme, H. A1 - Nguyen, C. A1 - Nguyen, F. A1 - Nicollet, S. A1 - Nygren, R. A1 - Ogorodnikova, O. A1 - Olivain, J. A1 - Orlandelli, P. A1 - Ottaviani, M. A1 - Ouvrier-Buffet, P. A1 - Ouyang, Z. A1 - Owen, L. A1 - Pacella, D. A1 - Pain, M. A1 - Pamela, J. A1 - Pamela, S. A1 - Panek, R. A1 - Panzarella, A. A1 - Paris, R. A1 - Parisot, T. A1 - Park, S. H. A1 - Parlange, F. A1 - Parrat, H. A1 - Pastor, G. A1 - Pastor, P. A1 - Pastor, T. A1 - Patris, R. A1 - Paume, M. A1 - Payan, J. A1 - Pecquet, A. L. A1 - Pegourie, B. A1 - Petrov, Y. A1 - Petrzilka, V. A1 - Peysson, Y. A1 - Piat, D. A1 - Picchiottino, J. M. A1 - Pierre, J. A1 - Platz, P. A1 - Portafaix, C. A1 - Prou, M. A1 - Pugno, R. A1 - Putchy, L. A1 - Qin, C. M. A1 - Quallis, L. A1 - Quemeneur, A. A1 - Quet, P. A1 - Rabaglino, E. A1 - Raharijaona, J. J. A1 - Ramette, J. A1 - Ravenel, N. A1 - Rax, J. M. A1 - Reichle, R. A1 - Renard, B. A1 - Renner, H. A1 - Reuss, J. D. A1 - Reux, C. A1 - Reverdin, C. A1 - Rey, G. A1 - Reynaud, P. A1 - Riband, P. H. A1 - Richou, M. A1 - Rigollet, F. A1 - Rimini, F. A1 - Riquet, D. A1 - Rochard, F. A1 - Rodriguez, L. A1 - Romanelli, M. A1 - Romannikov, A. A1 - Rosanvallon, S. A1 - Roth, J. A1 - Rothan, B. A1 - Roubin, J. P. A1 - Roubin, P. A1 - Roupillard, G. A1 - Roussel, P. A1 - Ruggieri, R. A1 - Sabathier, F. A1 - Sabbagh, S. A. A1 - Sabot, R. A1 - Saha, S. K. A1 - Saint-Laurent, F. A1 - Salasca, S. A1 - Salmon, T. A1 - Salvador, J. A1 - Samaille, F. A1 - Samain, A. A1 - Santagiustina, A. A1 - Saoutic, B. A1 - Sarazin, Y. A1 - Schild, T. A1 - Schlosser, J. A1 - Schneider, M. A1 - Schneider, K. A1 - Schunke, B. A1 - Schwander, F. A1 - Schwob, J. L. A1 - Sebelin, E. A1 - Segui, J. L. A1 - Seigneur, A. A1 - Shepard, T. A1 - Shigin, P. A1 - Signoret, J. A1 - Simoncini, J. A1 - Simonet, F. A1 - Simonin, A. A1 - Sirinelli, A. A1 - Sledziewski, Z. A1 - Smits, F. A1 - Soler, K. A1 - Sonato, P. G. A1 - Song, S. D. A1 - Sonnendrucker, E. A1 - Sourd, F. A1 - Spitz, P. A1 - Spuig, P. A1 - Stamm, R. A1 - Stephan, Y. A1 - Stirling, W. A1 - Stockel, J. A1 - Stott, P. A1 - Sthal, K. S. A1 - Surle, F. A1 - Svensson, L. A1 - Tachon, J. A1 - Talvard, M. A1 - Tamain, P. A1 - Tavian, L. A1 - Tena, M. A1 - Theis, J. M. A1 - Thomas, C. E. A1 - Thomas, P. A1 - Thonnat, M. A1 - Tobin, S. A1 - Tokar, M. A1 - Tonon, G. A1 - Torossian, A. A1 - Torre, A. A1 - Trainham, R. C. A1 - Travere, J. M. A1 - Tresset, G. A1 - Trier, E. A1 - Truc, A. A1 - Tsitrone, E. A1 - Turck, B. A1 - Turco, F. A1 - Turlur, S. A1 - Uckan, T. A1 - Udintsev, V. A1 - Urguijo, G. A1 - Utzel, N. A1 - Vallet, J. C. A1 - Valter, J. A1 - Van Houtte, D. A1 - Van Rompuy, T. A1 - Vatry, A. A1 - Verga, A. A1 - Vermare, L. A1 - Vezard, D. A1 - Viallet, H. A1 - Villecroze, F. A1 - Villedieu, E. A1 - Villegas, D. A1 - Vincent, E. A1 - Voitsekovitch, I. A1 - von Hellermann, M. A1 - Voslamber, D. A1 - Voyer, D. A1 - Vulliez, K. A1 - Wachter, C. A1 - Wagner, T. A1 - Waller, V. A1 - Wang, G. A1 - Wang, Z. A1 - Watkins, J. A1 - Weisse, J. A1 - White, R. A1 - Wijnands, T. A1 - Witrant, E. A1 - Worms, J. A1 - Xiao, W. A1 - Yu, D. A1 - Zabeo, L. A1 - Zabiego, M. A1 - Zani, L. A1 - Zhuang, G. A1 - Zou, X. L. A1 - Zucchi, E. A1 - Zunino, K. A1 - Zwingmann, W. VL - 56 SN - 1536-1055 UR -