**Rotatory Moti**on A body rotating about a fixed axis then every particle of the body moves in a circle and the centres of all these circles lie at axis of rotation. $\overrightarrow{\mathrm{v}}_{\mathrm{i}}=\mathrm{v}$ elocity of $\mathrm{i}^{\text {th }}$ particle of mass $\mathrm{m}_{\mathrm{i}}$ $\overrightarrow{\mathrm{r}_{\mathrm{i}}}=$ position vector of $\mathrm{i}^{\mathrm{th}}$particle $\mathrm{R}_{\mathrm{i}}=$ perpendicular distance of $\mathrm{i}^{\mathrm{ith}}$ particle from axis of rotation.

**MOMENT OF FORCE OR TORQUE**If a hinged or suspended or pivoted body tends to rotate under the action of force, it said to be acted on by a torque: The moment of a force or the torque, about an axis of rotation is equal to the product of the force and perpendicular distance of the line of the action of the force from axis of rotation. The magnitude of torque will be $$ \tau=F . b \quad=F r \sin \theta $$ $b=r \sin \theta$ is known as lever arm or moment arm Unit: $\quad$ M.K.S. : $N-m$ C. G.S. : dyne-cm Dimension: $M L^{2} T^{-2}$ vector form $\vec{\tau}=\vec{r} \times \vec{F}=r F \sin \theta \hat{n},$ where $\theta$ is angle between $\vec{r}$ and $\vec{F}$ and $\hat{n}$ is unit vector perpendicular to the plane of $\vec{r}$ and $\vec{F}$. Torque is an axial vector i.e. its direction is always perpendicular the plane containing vector $\overrightarrow{\mathrm{r}}$ and $\overrightarrow{\mathrm{F}}$ in accordance with right hand rule. If the torque rotates the body in anticlock wise direction, the torque is positive and if the torque rotates the body in clock-wise direction, the torque will be negative.

**Torque is Minimum**When $|\sin \theta|=\min =0$ i.e., $\theta=0^{\circ}$ or $180^{\circ}$ i.e., $\overrightarrow{\mathrm{F}}$ is collinear with $\overrightarrow{\mathrm{r}}$ And $\tau_{\min }=0$

**Torque is Maximum**When $|\sin \theta|=\max =1$ i.e., $\theta=90^{\circ}$ i.e., $\overrightarrow{\mathrm{F}}$ is orthogonal to $\overrightarrow{\mathrm{r}}$ And $\tau_{\max }=\mathrm{Fr}$ If a body is acted upon by more than one torque, the total torque is the vector sum of each torque. $$ \vec{\tau}=\vec{\tau}_{1}+\vec{\tau}_{2}+\vec{\tau}_{2}+\ldots \ldots \ldots+\vec{\tau}_{n}+\vec{\tau}_{n} \vec{\tau}=\sum_{i=1}^{n} \vec{\tau}_{i} $$

**Rotational equilibrium**$\sum_{i=1}^{n} \vec{\tau}_{i}=0$ $$ \quad \quad \tau=\mathrm{I} \alpha $$ I- Moment of inertia with respect to axis of rotation. $\alpha$ – Angular acceleration with respect to axis of rotation. $\vec{\tau}=\frac{d \vec{J}}{d t},$ where $\vec{J}$ is angular momentum. The more is the value of b, the more will be torque and easier to rotate the body. (i) The handle of screw driver is taken thick. (ii) In villages the handle of flour-mill is placed near the circumference. (iii) The handle of handpump is kept-long. (iv) The rinch used for opening the tap, is kept-tong. $$ \begin{aligned} \tau=\text { const. } & \text { i.e. } \quad F r \sin \theta=\text { const. } \\ & F=\frac{\text { Const. }}{r \sin \theta} \end{aligned} $$ i.e. longer the arm and greater sin $\theta$, lesser will be the force required for producing desired rotational effect.

**COUPLE OF FORCES**When two forces equal in magnitude but opposite in direction acting at two different points of a body they form couple. This couple tries to rotate body. $$ \begin{array}{l}{\tau=F \cdot b} \\ {b=d \sin \theta}\end{array} $$ Introduction to Rotational Dynamics Moment of Inertia Moment of Inertia: Perpendicular and Parallel axis theorem Radius of Gyration Law of Conservation of Angular Momentum Conservation of Angular Momentum Examples Kinetic Energy of a Rotating Body Work done in rotatory Motion Rotational Power Combine Translational and Rotational Motion Rolling without slipping Rolling on a plane surface Rolling on a Inclined Plane